fcdmft.rpa.pbc.krpa_slow module#
Periodic k-point spin-restricted random phase approximation (direct RPA/dRPA in chemistry) with N^4 scaling
- Method:
Main routines are based on GW-AC method descirbed in: T. Zhu and G.K.-L. Chan, J. Chem. Theory. Comput. 17, 727-741 (2021) X. Ren et al., New J. Phys. 14, 053020 (2012)
- class fcdmft.rpa.pbc.krpa_slow.KRPA(mf, frozen=None)[source]#
Bases:
StreamObject- Attributes:
- nmo
- nocc
Methods
__call__(*args, **kwargs)Update the attributes of the current object.
apply(fn, *args, **kwargs)Apply the fn to rest arguments: return fn(*args, **kwargs). The return value of method set is the object itself. This allows a series of functions/methods to be executed in pipe.
check_sanity()Check input of class/object attributes, check whether a class method is overwritten.
copy()Returns a shallow copy
Boolean mask for orbitals in k-point post-HF method.
get_nmo([per_kpoint])Number of orbitals for k-point calculations.
get_nocc([per_kpoint])Number of occupied orbitals for k-point calculations.
kernel([mo_energy, mo_coeff, nw])Args:
post_kernel(envs)A hook to be run after the main body of the kernel function.
pre_kernel(envs)A hook to be run before the main body of kernel function is executed.
run(*args, **kwargs)Call the kernel function of current object.
set(*args, **kwargs)Update the attributes of the current object.
view(cls)New view of object with the same attributes.
dump_flags
- get_frozen_mask()#
Boolean mask for orbitals in k-point post-HF method.
Creates a boolean mask to remove frozen orbitals and keep other orbitals for post-HF calculations.
- Args:
mp (
MP2): An instantiation of an SCF or post-Hartree-Fock object.- Returns:
moidx (list of
ndarrayof bool): Boolean mask of orbitals to include.
- get_nmo(per_kpoint=False)#
Number of orbitals for k-point calculations.
Number of orbitals for use in a calculation with k-points, taking into account frozen orbitals.
- Note:
If per_kpoint is False, then the number of orbitals here is equal to max(nocc) + max(nvir), where each max is done over all k-points. Otherwise the number of orbitals is returned as a list of number of orbitals at each k-point.
- Args:
mp (
MP2): An instantiation of an SCF or post-Hartree-Fock object. per_kpoint (bool, optional): True returns the number of orbitals at each k-point.For a description of False, see Note.
- Returns:
- nmo (int, list of int): Number of orbitals. For return type, see description of arg
per_kpoint.
- get_nocc(per_kpoint=False)#
Number of occupied orbitals for k-point calculations.
Number of occupied orbitals for use in a calculation with k-points, taking into account frozen orbitals.
- Args:
mp (
MP2): An instantiation of an SCF or post-Hartree-Fock object. per_kpoint (bool, optional): True returns the number of occupiedorbitals at each k-point. False gives the max of this list.
- Returns:
- nocc (int, list of int): Number of occupied orbitals. For return type, see description of arg
per_kpoint.
- kernel(mo_energy=None, mo_coeff=None, nw=40)[source]#
- Args:
mo_energy : 2D array (nkpts, nmo), mean-field mo energy mo_coeff : 3D array (nkpts, nmo, nmo), mean-field mo coefficient nw: integer, grid number
- Returns:
self.e_tot : RPA total eenrgy self.e_hf : EXX energy self.e_corr : RPA correlation energy
- property nmo#
- property nocc#
- fcdmft.rpa.pbc.krpa_slow.get_rho_response(rpa, omega, mo_energy, Lpq, kL, kidx)[source]#
Compute density response function in auxiliary basis at freq iw (for gapped systems with integer occupations)
- fcdmft.rpa.pbc.krpa_slow.get_rho_response_metal(rpa, omega, mo_energy, mo_occ, Lpq, kL, kidx)[source]#
Compute density response function in auxiliary basis at freq iw (for metallic systems with fractional occupations)
- fcdmft.rpa.pbc.krpa_slow.get_rpa_ecorr(rpa, freqs, wts, max_memory=8000)[source]#
Compute RPA correlation energy
- fcdmft.rpa.pbc.krpa_slow.get_rpa_ecorr_outcore(rpa, freqs, wts, max_memory=8000)[source]#
Compute RPA correlation energy