fcdmft.df.outcore module#

fcdmft.df.outcore.cholesky_eri(mol, erifile, auxbasis='weigend+etb', dataname='j3c', tmpdir=None, int3c='int3c2e', aosym='s2ij', int2c='int2c2e', comp=1, max_memory=2000, auxmol=None, verbose=3)[source]#

3-index density-fitting tensor.

fcdmft.df.outcore.cholesky_eri_b(mol, erifile, auxbasis='weigend+etb', dataname='j3c', int3c='int3c2e', aosym='s2ij', int2c='int2c2e', comp=1, max_memory=2000, auxmol=None, decompose_j2c='CD', lindep=1e-12, verbose=3)[source]#

3-center 2-electron DF tensor. Similar to cholesky_eri while this function stores DF tensor in blocks.

Args:
dataname: string

Dataset label of the DF tensor in HDF5 file.

decompose_j2c: string

The method to decompose the metric defined by int2c. It can be set to CD (cholesky decomposition) or ED (eigenvalue decomposition).

lindepfloat

The threshold to discard linearly dependent basis when decompose_j2c is set to ED.

fcdmft.df.outcore.eri_mo_nochol(mol, mo_coeffs, erifile, auxbasis='weigend+etb', dataname='eri_mo', int3c='int3c2e', aosym='s2ij', mosym='s2', comp=1, max_memory=2000, auxmol=None, verbose=3)[source]#
fcdmft.df.outcore.general(mol, mo_coeffs, erifile, auxbasis='weigend+etb', dataname='eri_mo', tmpdir=None, int3c='int3c2e', aosym='s2ij', int2c='int2c2e', comp=1, max_memory=2000, verbose=0, compact=True)[source]#

Transform ij of (ij|L) to MOs.